

CYCLOPENTADIENYL RUTHENIUM COMPLEXES WITH TRICARBOLIDE LIGANDS

Dmitry S. PEREKALIN^{a1}, Evgeniya A. TRIFONOVA^{a2}, Ivan V. GLUKHOV^{a3},
Josef HOLUB^b and Alexander R. KUDINOV^{a4,*}

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,
28 ul. Vavilova, 119991 Moscow GSP-1, Russian Federation; e-mail: ¹ dsp@ineos.ac.ru,
² trievgenia@gmail.com, ³ ivglukh@ineos.ac.ru, ⁴ arkudinov@ineos.ac.ru

^b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,
250 68 Řež, Czech Republic; e-mail: holub@iic.cas.cz

Received May 20, 2010

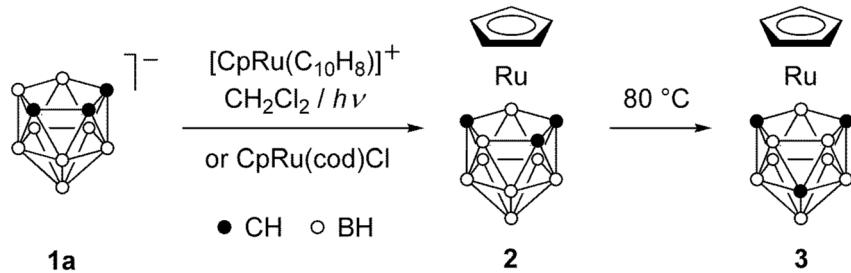
Accepted July 29, 2010

Published online November 9, 2010

Dedicated to Professor Bohumil Štíbr on the occasion of his 70th birthday.

Reaction of the tricarbollide anion $[7,8,9\text{-C}_3\text{B}_8\text{H}_{11}]^-$ (**1a**) with the naphthalene complex $[\text{CpRu}(\text{C}_{10}\text{H}_8)]^+$ under visible light irradiation in CH_2Cl_2 gives the 12-vertex *closo*-ruthenacarborane 1-Cp-1,2,3,5-RuC₃B₈H₁₁ (**2**; 87% yield). This complex was also obtained by reaction of **1a** with CpRu(cod)Cl (97%). Upon heating at 80 °C in toluene **2** rearranges into isomer 1-Cp-1,2,4,10-RuC₃B₈H₁₁ (**3**; 63%). Irradiation of **1a** with $[\text{CpRu}(\text{C}_{10}\text{H}_8)]^+$ in acetone gives the 11-vertex *closo*-1-Cp-1,2,3,4-RuC₃B₇H₁₀ (**4**; 32%). The latter was also prepared by reaction of **1a** with $[\text{CpRu}(\text{MeCN})_3]^+$ (59%). Compound **2** slowly undergoes cage contraction in acetone giving **4**. Irradiation of **1a** with $[\text{Cp}^*\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ affords the isomeric 12-vertex *closo*-ruthenacarboranes 1-Cp*-1,2,3,5-RuC₃B₈H₁₁ and 1-Cp*-1,2,4,10-RuC₃B₈H₁₁ (2.2:1 ratio; 56%). Reaction of the amino-substituted tricarbollide anion $[7\text{-tBuNH-7,8,9\text{-C}_3\text{B}_8\text{H}_{10}]^-$ with $[(\text{C}_5\text{R}_5)\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ ($\text{R} = \text{H, Me}$) selectively gives 12-vertex *closo*-ruthenacarboranes 1-(C₅R₅)-12-tBuNH-1,2,4,12-RuC₃B₈H₁₀ (ca. 50%). The structures of **2** and **4** were confirmed by X-ray diffraction.

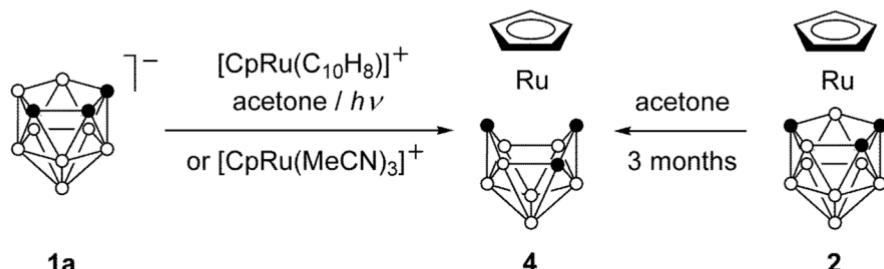
Keywords: Boron; Metallacarborane; Ruthenium; Tricarbollide; Polyhedral rearrangement.


In 1995 Štíbr, Teixidor et al.¹ have reported the preparation of the tricarbollide anions $[7\text{-R-7,8,9\text{-C}_3\text{B}_8\text{H}_{10}]^-$ ($\text{R} = \text{H}$ (**1a**), tBuNH (**1b**)). Due to the presence of the pentagonal open face and single negative charge, these species are analogous to Cp⁻ in coordinating ability towards transition metals². A number of tricarbollide complexes were synthesized by reaction of anions **1a** and **1b** with metal halides or carbonyl halide complexes³. Unfortu-

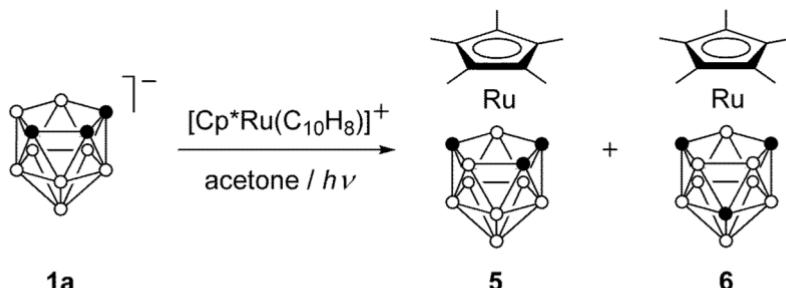
nately, this approach usually requires heating at high temperatures (>100 °C) which results in moderate yields of the products.

Iron and cobalt tricarbollide complexes have been prepared in high yields by visible light irradiation of anions **1a** and **1b** with $[\text{CpFe}(\text{C}_6\text{H}_6)]^+$, $[(\text{C}_6\text{H}_7)\text{Fe}(\text{C}_6\text{H}_6)]^+$ and $[(\text{C}_4\text{Me}_4)\text{Co}(\text{C}_6\text{H}_6)]^+$ (ref.⁴). Herein we describe the synthesis of ruthenium tricarbollides by analogous photochemical reactions of **1a** and **1b** with the naphthalene complexes $[(\text{C}_5\text{R}_5)\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ ($\text{R} = \text{H, Me}$)⁵.

RESULTS AND DISCUSSION


It was shown recently that the ruthenium complex $[\text{CpRu}(\text{C}_{10}\text{H}_8)]^+$ undergoes naphthalene replacement under both thermal and photochemical conditions⁶. We found that visible light irradiation of the tricarbollide anion **1a** with $[\text{CpRu}(\text{C}_{10}\text{H}_8)]^+$ in CH_2Cl_2 affords the 12-vertex *closو*-ruthenacarborane 1-Cp-1,2,3,5-Ru $\text{C}_3\text{B}_8\text{H}_{11}$ (**2**) in 87% yield (Scheme 1). Compound **2** was also prepared by reaction of **1a** with $\text{CpRu}(\text{cod})\text{Cl}$ (97% yield; cod = 1,5-cyclooctadiene). Notably, the metal complexation is accompanied by room-temperature polyhedral rearrangement. Upon heating in toluene at 80 °C, compound **2** undergoes further rearrangement giving 1-Cp-1,2,4,10-Ru $\text{C}_3\text{B}_8\text{H}_{11}$ (**3**) in 63% yield (50% conversion in 4 h, 100% in 12 h). The same isomerization sequence has been previously observed for CpFe , $(\text{C}_4\text{Me}_4)\text{Co}$ and Cp^*Ru tricarbollides^{4b,4c}. Noteworthy, the first rearrangement step proceeds at room temperature only in the case of ruthenium.

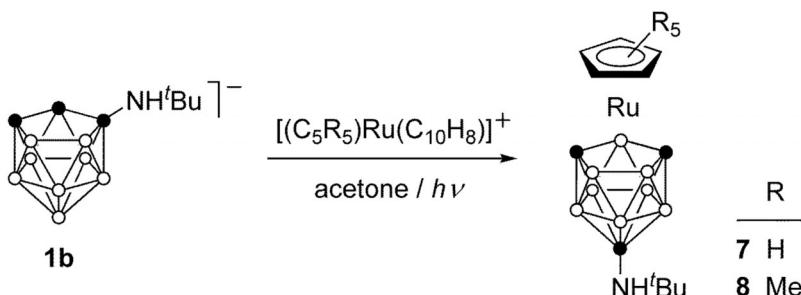
SCHEME 1


Irradiation of **1a** with $[\text{CpRu}(\text{C}_{10}\text{H}_8)]^+$ in acetone unexpectedly gives 11-vertex *closو*-1-Cp-1,2,3,4-Ru $\text{C}_3\text{B}_7\text{H}_{10}$ (**4**) (32%; Scheme 2). Compound **4** was also obtained in 59% yield by reaction of **1a** with $[\text{CpRu}(\text{MeCN})_3]^+$. Interestingly, **4** is slowly formed via cage contraction of **2** in acetone at room temperature (50% conversion in 18 days, 100% in 3 months)⁷.

Similar contraction has been observed previously for the iron complexes $1\text{-Cp-1,2,3,5-FeC}_3\text{B}_8\text{H}_{11}$ ^{4b} and $1\text{-Cp-4-}t\text{BuNH-1,2,4-FeSCB}_9\text{H}_9$ ⁸.

SCHEME 2

On the contrary, the irradiation of anion **1a** with the pentamethylated cyclopentadienyl complex $[\text{Cp}^*\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ in acetone affords only the 12-vertex ruthenacarborane isomers $1\text{-Cp}^*\text{-1,2,3,5-RuC}_3\text{B}_8\text{H}_{11}$ (**5**) and $1\text{-Cp}^*\text{-1,2,4,10-RuC}_3\text{B}_8\text{H}_{11}$ (**6**) in 2.2:1 ratio and 56% total yield (Scheme 3). Presumably, higher donor ability and steric hindrance of the Cp^* ligand prevents the cage contraction.



SCHEME 3

Visible light irradiation of the amino-substituted tricarbollide anion $[7\text{-}t\text{BuNH-7,8,9-C}_3\text{B}_8\text{H}_{10}]^-$ (**1b**) with $[(\text{C}_5\text{R}_5)\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ ($\text{R} = \text{H, Me}$) in acetone gives the 12-vertex *closو*-ruthenacarboranes $1\text{-(C}_5\text{R}_5\text{-12-}t\text{BuNH-1,2,4,12-RuC}_3\text{B}_8\text{H}_{10}}$ ($\text{R} = \text{H (7, Me (8))}$) in ca. 50% yield (Scheme 4). This reaction is accompanied by room-temperature polyhedral rearrangement which is typical for complexation of anion **1b**².

Recently, we have shown that the phosphacarborane anions $[7,8,9\text{-PC}_2\text{B}_8\text{H}_{10}]^-$ and $[7,8,9\text{-P}_2\text{CB}_8\text{H}_9]^-$ react with $[\text{CpFe}(\text{C}_6\text{H}_6)]^+$ and $[(\text{C}_4\text{Me}_4)\text{-Co}(\text{C}_6\text{H}_6)]^+$ giving the corresponding iron and cobalt complexes⁹. Unfortunately, the reactions of these anions with $[(\text{C}_5\text{R}_5)\text{Ru}(\text{C}_{10}\text{H}_8)]^+$ ($\text{R} = \text{H, Me}$) do not give any isolable ruthenacarboranes. Presumably, strong coordi-

nation of ruthenium with the lone electron pair of the phosphorous atom prohibits the formation of desired products^{9a,10}.

SCHEME 4

New compounds **2**, **3**, **4** and **7** were characterized by 1H and ^{11}B NMR spectroscopy and elemental analysis. The DFT-calculated ^{11}B NMR spectra for **2**, **3**, **4** and **7** show good correlation with the experimental data (mean deviation in chemical shifts is 1.6 ppm). Structures of **2** and **4** were determined by X-ray diffraction (Figs 1 and 2). The C_3B_2 face of the carborane

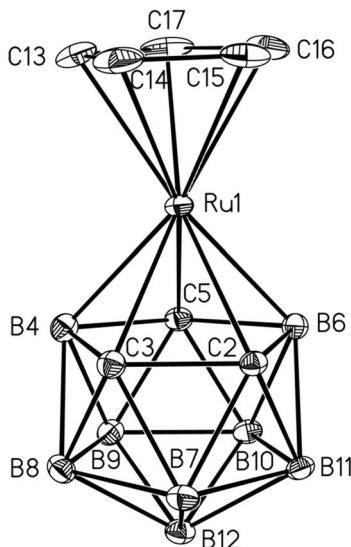


FIG. 1

Structure of **2**. Atoms are represented by 50% thermal ellipsoids. All hydrogen atoms are omitted for clarity. Selected distances (in Å): Ru1–C2 2.1731(19), Ru1–C3 2.1630(19), Ru1–B4 2.178(2), Ru1–C5 2.2086(18), Ru1–B6 2.193(2), Ru1–C13 2.173(2), Ru1–C14 2.176(2), Ru1–C15 2.185(2), Ru1–C16 2.181(2), Ru1–C17 2.169(2), C2–C3 1.630(3)

ligand in **2** is folded by 9.0° along the B4…B6 line, which is close to 8.2° folding for the iron congener^{4b} 1-Cp-1,2,3,5-FeC₃B₈H₁₁. The structure of **4** is generally similar to that of the substituted analogue¹¹ 1-Cp*-2-Ph-*clos*o-1,2,3,4-RuC₃B₇H₉. The metal-to-ring distances Ru…Cp in **2** (1.813 Å) and **4** (1.817 Å) are close to that in ruthenocene (1.822 Å)¹².

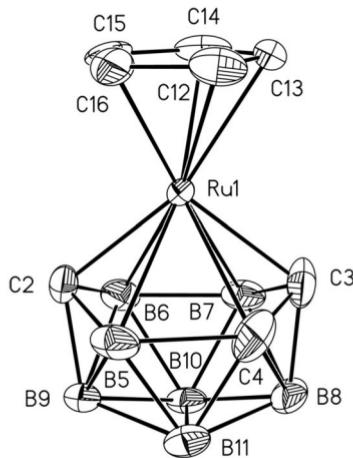


FIG. 2

Structure of **4**. Atoms are represented by 50% thermal ellipsoids. All hydrogen atoms are omitted for clarity. Selected distances (in Å): Ru1–C2 2.058(4), Ru1–C3 2.091(5), Ru1–C4 2.289(5), Ru1–B5 2.342(5), Ru1–B6 2.366(5), Ru1–B7 2.358(5), Ru1–C12 2.165(5), Ru1–C13 2.204(5), Ru1–C14 2.192(5), Ru1–C15 2.159(4), Ru1–C16 2.135(5), C3–C4 1.505(7)

CONCLUSION

It was shown that 12-vertex *clos*o-ruthenatricarbollides can be synthesized by reactions of tricarbollide anions with the naphthalene complexes $[(C_5R_5)Ru(C_{10}H_8)]^+$ under visible light irradiation. The complexation is accompanied by room-temperature polyhedral rearrangements. Ruthenium complexation of anion **1a** in polar solvents gives 11-vertex species **4** as a result of cage contraction.

EXPERIMENTAL

All reactions were carried out under argon in anhydrous solvents which were purified and dried according to the standard procedures. The isolation and purification of products was conducted in air. The starting materials CpRu(cod)Cl¹³, [CpRu(C₁₀H₈)]BF₄¹⁴, [Cp*Ru-(C₁₀H₈)]PF₆¹⁵, [CpRu(MeCN)₃]BF₄^{14a}, Cs[7,8,9-C₃B₈H₁₁] and [NBu₄][7-*t*BuNH-7,8,9-C₃B₈H₁₀]^{1f}

were prepared according to the literature procedures. Visible light irradiation was performed by a high pressure mercury vapour lamp with a phosphor coated bulb DRL-400W (similar to Philips HPL-N 400W). The ^1H and $^{11}\text{B}\{^1\text{H}\}$ NMR spectra were recorded from CDCl_3 solution with a Bruker Avance-400 instrument. Chemical shifts are given in ppm (δ -scale) relative to internal SiMe_4 (^1H) or external $\text{BF}_3\cdot\text{OEt}_2$ (^{11}B).

1-Cp-1,2,3,5-RuC₃B₈H₁₁ (2)

Method A: A suspension of $[\text{CpRu}(\text{C}_{10}\text{H}_8)]\text{BF}_4$ (114 mg, 0.3 mmol) and $\text{Cs}[7,8,9-\text{C}_3\text{B}_8\text{H}_{11}]$ (80 mg, 0.3 mmol) in CH_2Cl_2 (10 ml) was stirred for 2 h and then irradiated at room temperature for 20 h. The resulting mixture was evaporated, the residue was extracted with CH_2Cl_2 -petroleum ether mixture (1:2) and filtered through a short layer (5 cm) of Al_2O_3 . The solution was evaporated to give yellow crystals of 2 (78 mg; 87%).

Method B: A mixture of $\text{CpRu}(\text{cod})\text{Cl}$ (31 mg, 0.1 mmol) and $\text{Cs}[7,8,9-\text{C}_3\text{B}_8\text{H}_{11}]$ (26 mg, 0.1 mmol) in CH_2Cl_2 (4 ml) was stirred at room temperature overnight and then evaporated. The residue was extracted with CH_2Cl_2 -petroleum ether mixture (1:2) and filtered through a short layer (5 cm) of Al_2O_3 . Yellow solution was evaporated and the resulting solid was washed with hexane (2 ml) to give 2 (29 mg; 97%).

^1H NMR: 5.09 (s, 5 H, C_5H_5), 3.54 (broad s, 2 H, CH), 2.78 (broad s, 1 H, CH). $^{11}\text{B}\{^1\text{H}\}$ NMR: -8.7 (1 B), -15.3 (2 B), -18.1 (2 B), -21.5 (1 B), -25.2 (2 B). Calculated ^{11}B NMR: -8.3 (1 B), -15.4 (2 B), -18.7 (2 B), -23.7 (1 B), -25.2 (2 B). For $\text{C}_8\text{H}_{16}\text{B}_8\text{Ru}$ (299.77) calculated: 32.05% C, 5.38% H, 28.85% B; found: 32.22% C, 5.47% H, 28.70% B.

1-Cp-1,2,4,10-RuC₃B₈H₁₁ (3)

A solution of 2 (24 mg, 0.08 mmol) in toluene (3 ml) was at 80 °C for 12 h. The resulting mixture was evaporated, the residue was extracted with CH_2Cl_2 -petroleum ether mixture (1:4) and filtered through a short layer (5 cm) of Al_2O_3 . The filtrate was evaporated to dryness and recrystallized from pentane at -78 °C to give yellow crystals of 3 (15 mg; 63%). ^1H NMR: 4.71 (s, 5 H, C_5H_5), 2.25 (broad s, 2 H, CH), 1.72 (broad s, 1 H, CH). $^{11}\text{B}\{^1\text{H}\}$ NMR: -8.7 (1 B), -9.1 (1 B), -10.4 (2 B), -19.8 (2 B), -25.0 (2 B). Calculated ^{11}B NMR: -9.5 (1 B), -9.5 (2 B), -10.4 (1 B), -22.4 (2 B), -25.4 (2 B). For $\text{C}_8\text{H}_{16}\text{B}_8\text{Ru}$ (299.77) calculated: 32.05% C, 5.38% H, 28.85% B; found: 32.46% C, 5.12% H, 28.59% B.

1-Cp-1,2,3,4-RuC₃B₇H₁₀ (4)

Method A: A solution of $[\text{CpRu}(\text{C}_{10}\text{H}_8)]\text{BF}_4$ (114 mg, 0.3 mmol) and $\text{Cs}[7,8,9-\text{C}_3\text{B}_8\text{H}_{11}]$ (80 mg, 0.3 mmol) in acetone (10 ml) was irradiated at room temperature for 20 h. The resulting orange mixture was evaporated, the residue was washed with hexane, extracted with CH_2Cl_2 -petroleum ether mixture (2:1) and eluted through a short layer (5 cm) of Al_2O_3 . Yellow band was collected and evaporated to give yellow-orange crystals of 4 (28 mg; 32%).

Method B: A solution of $[\text{CpRu}(\text{MeCN})_3]\text{BF}_4$ (113 mg, 0.3 mmol) and $\text{Cs}[7,8,9-\text{C}_3\text{B}_8\text{H}_{11}]$ (80 mg, 0.3 mmol) in THF (6 ml) was stirred overnight. The resulting orange mixture was evaporated, the residue was extracted with CH_2Cl_2 -petroleum ether mixture (2:1) and eluted through a short layer (5 cm) of Al_2O_3 . Yellow band was collected, evaporated to dryness and washed with hexane to give orange powder of 4 (53 mg; 59%).

^1H NMR: 5.90 (broad s, 1 H, CH), 5.20 (broad s, 1 H, CH), 5.06 (s, 5 H, C_5H_5), 1.94 (broad s, 1 H, CH). $^{11}\text{B}\{^1\text{H}\}$ NMR: 6.6 (1 B), -1.8 (1 B), -9.7 (2 B), -28.7 (1 B), -29.7 (2 B). Calculated

¹¹B NMR: 7.3 (1 B), -5.7 (1 B), -6.0 (1 B), -6.4 (1 B), -29.0 (1 B), -29.4 (1 B), -31.9 (1 B). For C₈H₁₅B₇Ru (287.95) calculated: 33.37% C, 5.25% H, 26.28% B; found: 33.10% C, 5.36% H, 26.48% B.

1-Cp*-1,2,3,5-RuC₃B₈H₁₁ (5) and 1-Cp*-1,2,4,10-RuC₃B₈H₁₁ (6)

A solution of [Cp*Ru(C₁₀H₈)]PF₆ (51 mg, 0.1 mmol) and Cs[7,8,9-C₃B₈H₁₁] (27 mg, 0.1 mmol) in acetone (5 ml) was irradiated at room temperature for 36 h. The resulting solution was evaporated, the brown residue was dissolved in CH₂Cl₂-petroleum ether mixture (1:1) and eluted through a short layer (5 cm) of Al₂O₃. The filtrate was evaporated to dryness and washed with a small amount of cold hexane to give a mixture of 5 and 6 in 2.2:1 ratio (20 mg; 56% total yield). The compounds were identified by their ¹H and ¹¹B NMR spectra^{4b}.

1-Cp-12-tBuNH-1,2,4,12-RuC₃B₈H₁₀ (7) and 1-Cp*-12-tBuNH-1,2,4,12-RuC₃B₈H₁₀ (8)

A solution of [CpRu(C₁₀H₈)]BF₄ (38 mg, 0.1 mmol) and [NBu₄][7-tBuNH-7,8,9-C₃B₈H₁₀] (45 mg, 0.1 mmol) in acetone (5 ml) was irradiated at room temperature for 18 h. The resulting solution was evaporated, the residue was purified by silica gel column (10 cm) using hexane as an eluent. Pale yellow band was collected and evaporated to dryness to give crystals of 7 (20 mg; 54%). Analogous reaction of [Cp*Ru(C₁₀H₈)]PF₆ (51 mg, 0.1 mmol) and [NBu₄][7-tBuNH-7,8,9-C₃B₈H₁₀] (45 mg, 0.1 mmol) gives 8 (24 mg; 55%) which was identified by its ¹H and ¹¹B NMR spectra^{4a}.

¹H NMR: 4.98 (s, 5 H, C₅H₅), 2.43 (broad s, 2 H, CH), 2.35 (broad s, 1 H, CH), 1.25 (s, 9 H, CH₃). ¹¹B{¹H} NMR: -10.1 (2 B), -13.7 (1 B), -17.9 (2 B), -20.1 (1 B), -24.4 (2 B). Calculated ¹¹B NMR: -7.3 (1 B), -10.6 (1 B), -17.8 (1 B), -18.1 (1 B), -22.2 (1 B), -23.2 (1 B), -25.0 (1 B), -27.6 (1 B). For C₁₂H₂₅B₈NRu (370.89) calculated: 38.86% C, 6.79% H, 23.32% B; found: 38.95% C, 6.79% H, 22.78% B.

Computational Details

All DFT calculations were carried out using PRIRODA 6 software kindly provided by Dr. D. N. Laikov¹⁶. The geometries of 2, 3, 4 and 7 have been optimized without constraints using generalized gradient approximation (GGA) for the exchange-correlation function by Perdew, Burke and Ernzerhof (PBE)¹⁷. The 3z basis set (similar to TZP) of contracted Gaussian-type functions of the size (4s1p)/[2s1p] for H, (8s4p1d)/[4s2p1d] for B, C and N, (20s16p11d)/[8s7p5d] for Ru was used. Frequency calculations were performed to confirm the nature of the stationary points. For GIAO calculation of ¹¹B NMR shifts *ortho*-carborane was used as a standard instead of more commonly used B₂H₆¹⁸, because this provides a notable improvement for prediction of NMR spectra of the polyhedral compounds. Particularly, the isotropic shielding tensors were first calculated for *ortho*-carborane and summed with corresponding experimental chemical shifts giving average-weighted conversion value of 98.2 (vs 93.8 calculated from the data for B₂H₆ at the PBE/3z level). From this, the isotropic shielding tensors of 2, 3, 4 and 7 were subtracted to give chemical shift values. The visualization of calculation results was performed by ChemCraft (version 1.5) software (www.chemcraftprog.com).

X-ray Diffraction Study of **2** and **4**

The crystal of **2** and **4** were grown by slow evaporation of their CH_2Cl_2 solutions. Single-crystal X-ray diffraction experiments were carried out with a Bruker SMART APEX II CCD area detector diffractometer, using graphite monochromated $\text{MoK}\alpha$ radiation ($\lambda = 0.71073 \text{ \AA}$, ω -scans) at 100 K. Low temperature was maintained with a Cryostream open-flow N_2 gas cryostat (Oxford Cryosystems). Reflection intensities were integrated using SAINT software^{19a,19b} and absorption correction was applied semi-empirically using SADABS program^{19c}. The structures were solved by direct method and refined by the full-matrix least-squares against F^2 in anisotropic approximation for non-hydrogen atoms. All carborane

TABLE I
Crystallographic data for **2** and **4**

Parameter	2	4
Formula	$\text{C}_8\text{H}_{16}\text{B}_8\text{Ru}$	$\text{C}_8\text{H}_{15}\text{B}_7\text{Ru}$
Color, habit	yellow, prism	orange, prism
Crystal size, mm	$0.34 \times 0.23 \times 0.17$	$0.34 \times 0.27 \times 0.21$
$M, \text{ g mol}^{-1}$	299.76	287.94
Crystal system	orthorhombic	orthorhombic
Space group	$P2_12_12_1$	$P2_12_12_1$
$a, \text{\AA}$	6.5751(6)	8.428(3)
$b, \text{\AA}$	10.4641(10)	10.610(3)
$c, \text{\AA}$	17.7012(16)	13.010(4)
$\alpha, {}^\circ$	90.00	90.00
$\beta, {}^\circ$	90.00	90.00
$\gamma, {}^\circ$	90.00	90.00
$V, \text{\AA}^3$	1217.89(19)	1163.3(6)
Z	4	4
$D_c, \text{ g cm}^{-3}$	1.635	1.644
F	592	568
Data/restraints/parameters	8141/0/154	7156/0/146
GOF on F^2	1.003	1.009
Final R indices	$R1 = 0.0166$	$R1 = 0.0264$
$I > 2\sigma(I)$	$wR2 = 0.0389$	$wR2 = 0.0575$
R indices	$R1 = 0.0171$	$R1 = 0.0283$
All data	$wR2 = 0.0391$	$wR2 = 0.0588$

hydrogen atoms were located from difference Fourier syntheses, the H_C atoms were placed in geometrically calculated positions. All calculations were performed on an IBM PC/AT using the SHELXTL software^{19d}. The details of crystal data collection and refinement are listed in Table I. CCDC 742640 (for 2) and 742641 (for 4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

J.H. thanks the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. LC 523).

REFERENCES AND NOTES

1. a) Štíbr B., Holub J., Teixidor F., Viñas C.: *J. Chem. Soc., Chem. Commun.* **1995**, 795; b) Štíbr B., Holub J., Císařová I., Teixidor F., Viñas C.: *Inorg. Chim. Acta* **1996**, 245, 129; c) Štíbr B., Holub J., Císařová I., Teixidor F., Viñas C., Fusek J., Plzák Z.: *Inorg. Chem.* **1996**, 35, 3635; d) Rousseau R., Lee S., Canadell E., Teixidor F., Viñas C., Štíbr B.: *New J. Chem.* **1996**, 20, 277; e) Holub J., Štíbr B., Hnyk D., Fusek J., Císařová I., Teixidor F., Viñas C., Plzák Z., Schleyer P. v. R.: *J. Am. Chem. Soc.* **1997**, 119, 7750; f) Štíbr B., Holub J., Plešek J., Jelínek T., Grüner B., Teixidor F., Viñas C.: *J. Organomet. Chem.* **1999**, 582, 282.
2. Štíbr B.: *J. Organomet. Chem.* **2005**, 690, 2694.
3. a) Grüner B., Teixidor F., Viñas C., Sillanpää R., Kivekäs R., Štíbr B.: *J. Chem. Soc., Dalton Trans.* **1999**, 3337; b) Holub J., Grüner B., Císařová I., Fusek J., Plzák Z., Teixidor F., Viñas C., Štíbr B.: *Inorg. Chem.* **1999**, 38, 2775; c) Grüner B., Teixidor F., Viñas C., Sillanpää R., Kivekäs R., Holub J., Lehtonen A., Štíbr B.: *Inorg. Chem. Commun.* **1999**, 2, 411; d) Grüner B., Lehtonen A., Kivekäs R., Sillanpää R., Holub J., Teixidor F., Viñas C., Štíbr B.: *Inorg. Chem.* **2000**, 39, 2577; e) Grüner B., Štíbr B., Kivekäs R., Sillanpää R., Stopka P., Teixidor F., Viñas C.: *Chem. Eur. J.* **2003**, 9, 6115; f) Grüner B., Bačkovský J., Sillanpää R., Kivekäs R., Císařová I., Teixidor F., Viñas C., Štíbr B.: *Eur. J. Inorg. Chem.* **2004**, 1402; g) Perekalin D. S., Lyssenko K. A., Petrovskii P. V., Holub J., Štíbr B., Kudinov A. R.: *J. Organomet. Chem.* **2005**, 690, 2775.
4. a) Holub J., Grüner B., Perekalin D. S., Golovanov D. G., Lyssenko K. A., Petrovskii P. V., Kudinov A. R., Štíbr B.: *Inorg. Chem.* **2005**, 44, 1655; b) Perekalin D. S., Holub J., Golovanov D. G., Lyssenko K. A., Petrovskii P. V., Štíbr B., Kudinov A. R.: *Organometallics* **2005**, 24, 4387; c) Mutseneck E. V., Perekalin D. S., Holub J., Lyssenko K. A., Petrovskii P. V., Štíbr B., Kudinov A. R.: *Eur. J. Inorg. Chem.* **2006**, 1737; d) Perekalin D. S., Glukhov I. V., Štíbr B., Kudinov A. R.: *Inorg. Chim. Acta* **2006**, 359, 3264; e) Loginov D. A., Vinogradov M. M., Starikova Z. A., Petrovskii P. V., Holub J., Kudinov A. R.: *Russ. Chem. Bull.* **2008**, 57, 2294.
5. Cp^{*}Ru tricarbollide complexes were synthesized previously by reaction of **1a** and **1b** with [Cp^{*}RuCl]₄, see refs^{4a,4b}.
6. a) Karslyan E. E., Konovalov A. I., Perekalin D. S., Petrovskii P. V., Kudinov A. R.: *Russ. Chem. Bull.* **2008**, 57, 2032; b) Karslyan E. E., Perekalin D. S., Petrovskii P. V., Lyssenko K. A., Kudinov A. R.: *Russ. Chem. Bull.* **2008**, 57, 2201; c) Karslyan E. E., Perekalin

D. S., Petrovskii P. V., Borisova A. O., Kudinov A. R.: *Russ. Chem. Bull.* **2009**, *58*, 585; d) Hintermann L., Xiao L., Labonne A., Englert U.: *Organometallics* **2009**, *28*, 5739.

7. The removed boron vertex probably transforms into derivative of boronic acid as indicated by appearance of characteristic broad singlet at 20.0 ppm in the ^{11}B NMR spectrum of the reaction mixture.

8. Perekalin D. S., Glukhov I. V., Holub J., Císařová I., Štíbr B., Kudinov A. R.: *Organometallics* **2008**, *27*, 5273.

9. a) Mutseneck E. V., Perekalin D. S., Holub J., Starikova Z. A., Petrovskii P. V., Zanello P., Corsini M., Štíbr B., Kudinov A. R.: *Organometallics* **2006**, *25*, 2419; b) Kudinov A. R., Herber R. H., Zanello P., Perekalin D. S., Glukhov I. V., Nowik I., Corsini M., Fedi S., Laschi F.: *Eur. J. Inorg. Chem.* **2007**, 4190.

10. Štíbr B., Holub J., Bakardjiev M., Pavlik I., Tok O. L., Císařová I., Wrackmeyer B., Herberhold M.: *Chem. Eur. J.* **2003**, *9*, 2239.

11. Ramachandran B. M., Trupia S. M., Geiger W. E., Carroll P. J., Sneddon L. G.: *Organometallics* **2002**, *21*, 5078.

12. a) Seiler P., Dunitz J. D.: *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **1980**, *36*, 2946; b) Borissova A. O., Antipin M. Yu., Perekalin D. S., Lyssenko K. A.: *CrystEngComm* **2008**, *10*, 827.

13. Albers M. O., Robinson D. J., Shaver A., Singleton E.: *Organometallics* **1986**, *5*, 2199.

14. a) Kündig E. P., Monnier F. R.: *Adv. Synth. Catal.* **2004**, *346*, 901; b) Mercier A., Yeo W. C., Chou J., Chaudhuri P. D., Bernardinelli G., Kündig E. P.: *Chem. Commun.* **2009**, 5227.

15. McNair A. M., Mann K. R.: *Inorg. Chem.* **1986**, *25*, 2519.

16. a) Laikov D. N., Ustyryuk Yu. A.: *Russ. Chem. Bull.* **2005**, *54*, 820; b) Laikov D. N.: *Chem. Phys. Lett.* **1997**, *281*, 151.

17. Perdew J. P., Burke K., Ernzerhof M.: *Phys. Rev. Lett.* **1996**, *77*, 3865.

18. Bühl M., Holub J., Hnyk D., Macháček J.: *Organometallics* **2006**, *25*, 2173.

19. a) SAINTPlus, *Data Reduction and Correction Program*, v. 6.01. Bruker AXS, Madison (WI) 1998; b) SMART, *Bruker Molecular Analysis Research Tool*, v. 5.059. Bruker AXS, Madison (WI) 1998; c) Sheldrick G. M.: SADABS, *Bruker/Siemens Area Detector Absorption Correction Program*, v. 2.01. Bruker AXS, Madison (WI) 1998; d) Sheldrick G. M.: *SHELXTL97*, v. 5.10. Bruker AXS, Madison (WI) 1997.